首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16583篇
  免费   1784篇
  国内免费   2105篇
  2024年   28篇
  2023年   420篇
  2022年   380篇
  2021年   693篇
  2020年   700篇
  2019年   816篇
  2018年   683篇
  2017年   599篇
  2016年   690篇
  2015年   684篇
  2014年   727篇
  2013年   1111篇
  2012年   686篇
  2011年   658篇
  2010年   564篇
  2009年   765篇
  2008年   798篇
  2007年   832篇
  2006年   874篇
  2005年   780篇
  2004年   741篇
  2003年   686篇
  2002年   671篇
  2001年   598篇
  2000年   550篇
  1999年   456篇
  1998年   357篇
  1997年   292篇
  1996年   325篇
  1995年   267篇
  1994年   280篇
  1993年   268篇
  1992年   238篇
  1991年   179篇
  1990年   164篇
  1989年   135篇
  1988年   108篇
  1987年   94篇
  1986年   76篇
  1985年   130篇
  1984年   86篇
  1983年   53篇
  1982年   54篇
  1981年   43篇
  1980年   24篇
  1979年   20篇
  1978年   16篇
  1977年   18篇
  1976年   12篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 421 毫秒
931.
Human activities have resulted in arsenic (As) and heavy metals accumulation in paddy soils in China. Phytoremediation has been suggested as an effective and low-cost method to clean up contaminated soils. A combined soil-sand pot experiment was conducted to investigate the influence of red mud (RM) supply on iron plaque formation and As and heavy metal accumulation in two wetland plant species (Cyperus alternifolius Rottb., Echinodorus amazonicus Rataj), using As and heavy metals polluted paddy soil combined with three rates of RM application (0, 2%, 5%). The results showed that RM supply significantly decreased As and heavy metals accumulation in shoots of the two plants due to the decrease of As and heavy metal availability and the enhancement of the formation of iron plaque on the root surface and in the rhizosphere. Both wetland plants supplied with RM tended to have more Fe plaque, higher As and heavy metals on roots and in their rhizospheres, and were more tolerant of As and heavy metal toxicity. The results suggest that RM-induced enhancement of the formation of iron plaque on the root surface and in the rhizosphere of wetland plants may be significant for remediation of soils contaminated with As and heavy metals.  相似文献   
932.
The effectiveness of plant growth promoting bacteria (PGPB) in improving metal phytoremediation is still limited by stunted plant growth under high soil metal concentrations. Meanwhile, mixed planting with leguminous plants is known to improve yield in nutrient deficient soils but the use of a metal tolerant legume to enhance metal tolerance of a phytoremediator has not been explored. We compared the use of Pseudomonas brassicacearum, Rhizobium leguminosarum, and the metal tolerant leguminous plant Vicia sativa to promote the growth of Brassica juncea in soil contaminated with 400 mg Zn kg–1, and used synchrotron based microfocus X-ray absorption spectroscopy to probe Zn speciation in plant roots. B. juncea grew better when planted with V. sativa than when inoculated with PGPB. By combining PGPB with mixed planting, B. juncea recovered full growth while also achieving soil remediation efficiency of >75%, the maximum ever demonstrated for B. juncea. μXANES analysis of V. sativa suggested possible root exudation of the Zn chelates histidine and cysteine were responsible for reducing Zn toxicity. We propose the exploration of a legume-assisted-phytoremediation system as a more effective alternative to PGPB for Zn bioremediation.  相似文献   
933.
In this study different bacterial inoculation methods were tested for tobacco plants growing in a mine-soil contaminated with Pb, Zn, and Cd. The inoculation methods evaluated were: seed inoculation, soil inoculation, dual soil inoculation event, and seed+soil inoculation. Each inoculum was added at two bacterial densities (106 CFUs mL?1 and 108 CFUs mL?1). The objectives were to evaluate whether or not the mode of inoculation or the number of applied microorganisms influences plant response. The most pronounced bacterial-induced effect was found for biomass production, and the soil inoculation treatment (using 106 CFUs mL?1) led to the highest increase in shoot dry weight yield (up to 45%). Bacterial-induced effects on shoot metal concentrations were less pronounced; although a positive effect was found on shoot Pb concentration when using 108 CFUs mL?1 in the soil inoculation (29% increase) and in the seed+soil inoculation (34% increase). Also shoot Zn concentration increased by 24% after seed inoculation with 106 CFUs mL?1. The best effects on the total metal yield were not correlated with an increasing number of inoculated bacteria. In fact the best results were found after a single soil inoculation using the lower cellular density of 106 CFUs mL?1.  相似文献   
934.
In the biosphere reserve Barranca de Metztitlán in Mexico, there is an extensive area with a semiarid scrub. The dominant species is the cactus Isolatocereus dumortieri. This is a key species in the ecosystem, because many species of birds, bats and insects are feeding from its nectar, pollen and fruits during the dry season thanks to their capacity to store water and carbon. However, there is no information about their potential to store water and carbon. The purpose of this study was to estimate the ability of I. dumortieri to store water and carbon. Water content per plant was estimated as 537.64 ± 71.59 L during the dry season and 692.24 ± 92.18 L during the wet season. In the same way the carbon stored per cactus was 16.75 kg ± 7.07 corresponding to 1.25 kg C m2. The results shows the importance of I. dumortieri in maintaining the ecosystem services of the scrub vegetation.  相似文献   
935.
Togninia minima is the main fungal species associated with grapevine leaf stripe disease worldwide. This species is mainly known from its asexual state in nature; nevertheless, a biallelic heterothallic mating strategy has been confirmed for this species based on in vitro crossing studies. There are no data available on the incidence of an active sexual cycle within the populations of this species in many grapevine‐producing countries as well as Iran. The possibility of a clandestine sexual cycle within the Iranian isolates of T. minima was evaluated by analysing the distribution and frequency of the mating‐type alleles on a microspatial and a macrogeographical scales. Towards this aim, a total of 90 T. minima isolates were recovered from grapevines with esca disease from the vineyards in north and north‐western Iran. A multiplex PCR method previously designed by authors was applied for simultaneous identification and determination of the mating‐type alleles in T. minima populations. The results on the screening of mating‐type alleles using multiplex PCR method revealed the mating‐type identity of 77 isolates as Mat1‐2 and 23 isolates as Mat1‐1. Our results showed that both Mat1‐1 and Mat1‐2 isolates are present in a single vineyard and even on single vines. The distribution of mating‐type alleles in the sampled area skewed from the 1 : 1 ratio (77 : 23); however, co‐occurrence of both mating types in a single vineyard and even on single vines is suggestive for the presence of an active sexual cycle for T. minima in north‐western Iran.  相似文献   
936.
Trichoderma has been used to manage a large number of pathogens, but there is a gap in the mechanisms used by these biocontrol agents regarding the physiological response of cassava plants (Manihot esculenta) when it is subjected to cassava root rot. The aims of this study were to investigate the antagonist activity of ten Trichoderma isolates against Fusarium solani on potato dextrose Agar (PDA), to quantify the chitinase production, to select and test in vivo the best isolate from each experiment and to assess the physiological response of cassava to the production of oxidative enzyme complex production (ascorbate peroxidase, catalase, peroxidase and polyphenol oxidase). All Trichoderma isolates have shown competitive capability against F. solani, and Trichoderma hamatum URM 6656 showed the highest inhibition of pathogen growth (88.91%). All isolates have shown chitinase activity, but Trichoderma aureoviride URM 5158 produced the highest amount of chitinase. T. hamatum URM 6656 and Taureoviride URM 5158 were selected to be applied in vivo. The two Trichoderma strains reduced 64 and 60% of the disease severity in the shoot and 82 and 84% in the root. Cassava plants infected with Trichoderma have shown the highest peroxidase and ascorbate peroxidase production. Our results have indicated that T. aureoviride URM 5158 is an effective biocontrol agent against cassava root rot caused by F. solani, because it presented competitive antagonist capability in vitro, the highest chitinase production, and reduced the cassava root rot severity. The application of T. aureoviride has led to the maximum enzyme activity of reactive oxygen species group in cassava plants.  相似文献   
937.
Studies designed to measure dispersal capacity of Diaphorina citri Kuwayama (Hemiptera: Liviidae) are needed to provide the epidemiological knowledge necessary to improve management of citrus huanglongbing. In this study, a mark–release–recapture technique was used to investigate whether 1) host or non‐host plants of D. citri can act as barriers for dispersing insects and 2) presence or absence of young citrus leaves influence movement of D. citri towards citrus plants. The experimental field consisted of four circular and adjacent areas containing citrus trees, Citrus sinensis (L.) Osbeck cv. ‘Hamlin’, planted in concentric circles at 18, 24 and 30 m from the release centre. Insect activity was monitored by recapturing at each distance using yellow stick traps. Dense plantings of tall non‐host plants of D. citri such as corn had no effect on insect dispersal towards citrus plants when compared to a shorter cover crop such as grass. In contrast, suitable host plants acted as traps decreasing movement of D. citri. Diaphorina citri dispersed at greater speeds in the absence of young leaves reaching 140 m within 6 hours after release, whereas in the presence of young leaves, individuals reached at most 60 m at 1 day after release. Results suggest that D. citri control measures may be more efficient during periods of highest vegetative activity when insects are less active. Moreover, the use of suitable host plants for D. citri as trap plants may be a potential tactic to prevent movement of insects into the crop.  相似文献   
938.
Previous studies have shown that the infectivity of baculovirus to herbivores is affected by phytochemicals ingested during the acquisition of viral inoculum on the foliage of host plants. Here, we measured the effects of 14 host plant species on the infectivity of Spodoptera exigua nucleopolyhedrovirus (SeNPV) to its larvae. The order of the LD50 values of SeNPV among the host plants was Ipomoea aquatica > Brassica oleracea > Raphanus sativus > Amaranthus tricolor > Spinacia oleracea > Vigna unguiculata > Solanum melongena > Capsicum annuum > Apium graveolens > Allium fistulosum > Lactuca sativa > Brassica chinensis > Zea mays > Glycine max, with 940.1 ± 2.26, 424.0 ± 0.60, 295.2 ± 1.13, 147.3 ± 0.63, 138.6 ± 0.22, 119.9 ± 0.07, 119.8 ± 0.02, 109.2 ± 0.18, 104.8 ± 0.62, 102.1 ± 0.66, 97.9 ± 0.22, 89.9 ± 0.32, 79.0 ± 0.13 and 64.0 ± 0.38 OBs per larva, respectively, and the values of mean time to death of virus‐infected larvae were 6.21 ± 0.11, 7.12 ± 0.10, 7.33 ± 0.21, 6.97 ± 0.02, 7.06 ± 0.01, 7.29 ± 0.03, 7.32 ± 0.05, 7.07 ± 0.08, 7.24 ± 0.11, 7.09 ± 0.13, 7.50 ± 0.06, 7.23 ± 0.01, 7.30 ± 0.02 and 7.19 ± 0.07 days, respectively. The mean time to death of larvae decreased with increasing viral dose, and corrected mortality decreased as the larval mean time to death increased. These findings have significance for understanding the effects of host plants on the infectivity of baculovirus to noctuids.  相似文献   
939.
The preference–performance hypothesis predicts that moth behaviour links plant variations with caterpillar attack and distribution, and the plant‐age hypothesis states that specialist herbivores are more successful in exploring younger plant tissue. We integrated these predictions to investigate underlying mechanisms by which moths and caterpillars of Plutella xylostella L. (Lepidoptera: Plutellidae) track and exploit within‐plant variability of leaf age and stratification. We measured leaf proteins, glucosinolates and fibre, as well as larval choice, developmental performance, and moth oviposition preference with regard to leaf age classes (young, mature and senescent) of three varieties (collard, cauliflower and cabbage) of the main host plant Brassica oleracea L. Larvae consistently fit the prediction that specialist herbivores prefer and perform better on young, upper leaves that have the highest protein level, despite the highest content of defence compounds. Conversely, moths laid more eggs on fibrous and less nutritious leaves from the lower and senescent stratum. We argue that the leaf stratification of host plants imposes conflicting selective pressures concerning offspring feeding and protection on adult females. If egg mortality is catastrophic on the upper nutritious leaves in a particular microclimatic context (e.g. sun, heat, winds, drought or rain‐washing), then oviposition preference will remain for the suboptimal lower and senescent leaves. The ability of larvae to spread upwards over the plant to access the more nutritious leaf stratum is critical when eggs are preferentially laid on the protective low‐quality leaves.  相似文献   
940.
《植物生态学报》2016,40(11):1145
Aims How alien invasive plants and co-occurring native plants utilize nutrients is one of major issues in invasion ecology. Foliar nitrogen (N) and phosphorus (P) contents and stoichiometry can elucidate the uptake ability and limitation status of nutrients in plants, which provides basic knowledge for understanding the invading ability and co-occurrence or disappearance of plants.
Methods Based on typical alien invasive plants (Chromolaena odorata, Ageratina adenophora) and native plants in southwestern China, this study focused on strategies of N and P utilization among invasive plants and native plants under different invasion conditions. The species compositions, aboveground biomass, leaf N and P contents and leaf N:P were investigated for plants in plots with no invasion and with different invasion extents (estimated by the plot-based percentage of invaders’ biomass in total community) at Mt. Kongming in Xishuangbanna region, Yunnan Province, China.
Important findings The species number decreased significantly with the invasion extent of both C. odorata and A. adenophora, although the aboveground biomass was greatly enhanced. Leaf N and P contents did not differ between the two studied invaders, but they showed significantly higher N and P levels than both co-occurring and only native species (p < 0.05). Besides, leaf N and P contents of invaders increased with the invasion extent, and leaf N of native plants also showed an increasing trend with the invasion extent. When the influence of invasion was checked for the same species, leaf P contents decreased, whereas leaf N and N:P increased for most native plants under invasion. Based on the absolute foliar N and P contents, N:P values, we inferred that native plants were still limited by N, although N availability might be enhanced by invasion. Both invasive plants had leaf N:P values lower than 10, suggesting a higher P uptake relative to N uptake. All above results highlighted a higher N and P uptake of typical alien invasive plants in southwestern China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号